Improved sequence classification using adaptive segmental sequence alignment
نویسندگان
چکیده
Traditional pairwise sequence alignment is based on matching individual samples from two sequences, under time monotonicity constraints. However, in some instances matching two segments of points may be preferred and can result in increased noise robustness. This paper presents an approach to segmental sequence alignment based on adaptive pairwise segmentation. We introduce a distance metric between segments based on average pairwise distances, which addresses deficiencies of prior approaches. We then present a modified pair-HMM that incorporates the proposed distance metric and use it to devise an efficient algorithm to jointly segment and align the two sequences. Our results demonstrate that this new measure of sequence similarity can lead to improved classification performance, while being resilient to noise, on a variety of problems, from EEG to motion sequence classification.
منابع مشابه
Signals of Historical Interlocus Gene Conversion in Human Segmental Duplications
Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC). Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملAn Application of the ABS LX Algorithm to Multiple Sequence Alignment
We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...
متن کاملOne Terminal Digital Algorithm for Adaptive Single Pole Auto-Reclosing Based on Zero Sequence Voltage
This paper presents an algorithm for adaptive determination of the dead timeduring transient arcing faults and blocking automatic reclosing during permanent faults onoverhead transmission lines. The discrimination between transient and permanent faults ismade by the zero sequence voltage measured at the relay point. If the fault is recognised asan arcing one, then the third harmonic of the zero...
متن کاملgpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کامل